Engines of Adaptation: Crutchfield group garners major award to experiment on the evolution of computation
Remarkably robust and intelligent systems operate across the tremendous time and length scales of the natural world. At one extreme, nanoscale motor proteins shuttle nutrients along microtubule highways, adapting their loads to their host cell’s needs. At the other, an albatross on a 3,000-mile trek efficiently tracks and adaptively leverages wind fluctuations to radically reduce energy consumption as it circumnavigates an entire ocean without touching down. What is common in the behaviors spanning these immense scales is what Prof. Jim Crutchfield calls adaptive emergent computation.
The Army Research Office is supporting Prof. Jim Crutchfield to explore the fundamental principles of adaptive emergent computation and to experimentally demonstrate how thermodynamic forces can drive a system to be naturally programmable. The three-year $1.5 million project is an experimental collaboration with Prof. Michael Roukes (Kavli Nanoscience Institute, Caltech) to design arrays of nanoscale information-heat engines that exhibit emergent computation and with Prof. Erik Winfree (Computer Science, Caltech) to deploy his DNA computing technology to evolve emergent computation in chemical reactions.