Electromagnetism, Optics and Waves

Prepared by Dustin Gilbert Observations made Sept 18, 2010 UC Davis GRE Prep

Observations

The largest general misunderstanding was with circuitry, and circuit elements. This is something you can only know by memorization

The second most common mistakes I found were with calculating EMF induced by a change in flux. Remember flux change can be either dB or dA

General solution guidance

Eliminate unreasonable solutions by physical arguments:

Limits:

 $R \rightarrow inf. R \rightarrow 0 M \rightarrow inf. M \rightarrow 0 t \rightarrow inf t \rightarrow 0$

Eliminate unreasonable solutions by Unit Analysis:

always try to work in one unit system, MKS, CGS, or other, but don't have m and cm in one problem.

Look for common forms, such as potentials $\sim 1/x$

No where is using physical arguments and unit analysis more important than with E/M

There are many E/M problems which cannot be solved by trivial methods (hence why Jackson exists) E/M has the advantage that it deals with easily comprehendible objects (charge, simple non-relativistic space-time...) all with physical units! Take advantage.

PS, many problems (unless it has a momentized equation) are solved by

Example problem 1

In condensed matter, we use an instrument called a Vibrating Sample Magnetometer (VSM). A VSM applies a constant magnetic field, B, through a loop of wire, then drives a magnetic sample back and forth through this loop. The EMF is measured, and the magnetization is calculated. If our sample is a simple cylinder, with magnetization M, and radius A, please select the plot which describes the EMF.

Solution

The correct answer is B.

Solution A is similar to B, but offset by some constant (presumably because of the constant magnetic field). Remember though, the derivative gets rid of all constants

Solution C is similar to the magnetic flux through the loop. The EMF is just the derivative

Solution D is the integral (rather than the derivative) Integral [phi dt].

Example problem 2

Given the below circuit, what is the value of the capacitance if half the current is going through the resistor

Solution

There is a simple voltage divider between the capacitor and R2. If they have the same impedence, the current should split evenly.

 $Z = (1/\omega C) = 20 \text{ Ohm}$ $C = (1/(\omega 20))$

 $2\pi f = \omega = 1E6*2\pi$

 $C = 1/(20^{*}(\sim 6)^{*}1E6) \sim 1/12^{*}1E-6 \sim 0.1^{*}1E-6 = 10nF$

Closest is 5nF (B)

[true answer is 7.96 nF]

Example Problem 3

If the loop below has a diameter of 10cm, and the magnetic field through it is decreasing at a rate of 100 Kelogauss/sec, and R has a value of 3000 mOhm, what is the Current regist

mmeter_{MA}

- 1 A
- 100 mA
- 25mA
- 250 mA

Review of important points

The correct answer is D

convert to MKS units:

100kG = 10T 10cm diam = 5cm radius = 0.05m 3000mOhm = 30hm

 $\mathsf{EMF} = \mathsf{A} * \mathsf{dB/dt} = \pi P2 * \delta B/\delta \tau = (3.14) * 0.052 * 10 \sim 3 * 2.5 \text{E} - 3 * 10$

 $EM\Phi \sim 7.5E-2 = 0.075\varsigma$

 $I = \varsigma/P = 0.075/3 = 0.025A = 25\mu A (\Delta)$

3B

The correct answer is C, the capacitor acts as a high pass filter. The EMF initially is DC, so it will not pass the capacitor, so D is incorrect. When there exists a large dl/dt (essentially a pulse) the capacitor allows current flow, but afterwards, no EMF exists at all, so B is incorrect, and so is A. C is the correct answer.

At what frequency does the below circuit oscilate?

- a. 10 GHz
- b. 100 kHz
- c. 100MHz
- d. **1.6MHz**
- e. 16MHz

L=2microHenrys

Correct answer is E ω = 1/σθρτ (ΛX) $\Lambda = 2E - 6$ X = 47E - 12 $\Lambda X \sim 100E - 18$ $\Sigma \theta \rho \tau (\Lambda X) = 10E - 9$ $\omega = 1E8$ $\phi = \omega/2\pi = 1E8/6.28 = 16E6 = 16MH\zeta$

General Guidance

Get plenty of sleep the night before and eat breakfast before hand

- Don't stress, it is a negative feedback, so it will only get worse
- I usually take most of the day before off, it will get you clear of mind

Take the test the way you study: if you didn't study tweeked out on caffeine, then don't go to the test all tweeked