Additional problem on time-dependent perturbation theory.

1. (a) Suppose H' is constant (except that it was turned on at $t=0$ and switched off again at some later time t). Find the probability of transition from state N to state m ($m \neq N$) as a function of t.

Answer: \[\frac{4 |H'_{mN}|^2 \sin^2 \left[\frac{(E_N - E_m)t}{2\hbar} \right]}{(E_N - E_m)^2} \]

(Note that this is the answer given by Liboff in Table 13.2, under the heading DC perturbation turned on at $t=0$).

(b) Now use the result of part (a) to find the solution to the following:

A particle of mass m is initially in the ground state of the one-dimensional infinite square well. At time $t=0$, a "brick" is dropped into the well, so that the potential becomes

\[V(x) = \begin{cases} V_o, & \text{if } 0 \leq x \leq a/2, \\ 0, & \text{if } a/2 < x \leq a, \\ \infty, & \text{otherwise} \end{cases} \]

where $V_o << E_1$. After a time T, the brick is removed, and the energy of the particle is measured. Find the probability (in first-order perturbation theory) that the energy is now E_2.