Physics 9HE—Modern Physics
Quiz 2
27 February, 2014
(100 points total)
You may tear off this sheet.

Miscellaneous data and equations:

c = 3.00 x 10^8 m/s
e = 1.60 x 10^{-19} C
1 eV = 1.60 x 10^{-19} J
1 Å = 10^{-10} m

\[M_{\text{Sun}} = 2 \times 10^{30} \text{ kg} \quad M_{\text{Earth}} = 5.98 \times 10^{24} \text{ kg} \quad r_{\text{Earth}} = 6.38 \times 10^6 \text{ m} \]

\[m_e = 9.1094 \times 10^{-31} \text{ kg} \quad m_p = 1.6726 \times 10^{-27} \text{ kg} \quad m_n = 1.6749 \times 10^{-27} \text{ kg} \quad m(T) = 1.0078 \text{ u} \]

\[G = 6.67 \times 10^{-11} \text{ Nt-m}^2/\text{kg}^2 \quad g = 9.81 \text{ m/s}^2 \quad \sigma = 5.67 \times 10^{-8} \text{ W} \cdot \text{m}^{-2} \cdot \text{K}^{-4} \]

\[h = 6.63 \times 10^{-34} \text{ J-s} \quad \hbar = h/2\pi = 1.05 \times 10^{-34} \text{ J-s} \quad k_B = 1.38 \times 10^{-23} \text{ J-K}^{-1} \quad a_0 = 0.529 \text{ Å} \]

\[N(t) = N_0 \exp(-t/\tau_0) = N_0 \exp(-0.693l/t_1/2) \quad k_c = 1/(4\pi \varepsilon_0) = 8.98 \times 10^9 \text{ N-m}^2/\text{C}^2 \quad R_H = 1.09678 \times 10^7 \text{ m}^{-1} \]

\[\gamma = \frac{1}{(1 - v^2/c^2)^{1/2}} = 1 + 0.5 \beta^2 \quad v < c \quad \beta = v/c = [(v^2 - 1)/v^2]^{1/2} \]

\[T = \gamma T_0 \quad L = L_0/\gamma \quad v = \nu_0 \frac{(1 \pm \beta)^{1/2}}{(1 \mp \beta)^{1/2}} = \nu_0 [1 \pm \beta] \quad \nu = c/\lambda \quad \nu \text{ (lect.)} = f(\text{book}) \]

\[\dot{p} = \gamma m \dot{v} \quad E = \gamma mc^2 = K + mc^2 \quad E^2 = p^2 c^2 + m^2 c^4 \]

\[E = pc = h\nu \quad \Delta \nu / \nu = \Delta T / T = -GM \left[\frac{1}{r_1} - \frac{1}{r_2} \right] \approx -\frac{gH}{c^2} \quad \frac{\Delta \nu}{\nu} \approx -\frac{\Delta \lambda}{\lambda} \quad \text{if } \Delta \nu / \nu \ll 1 \quad R_{\text{Sch}} = \frac{2GM}{c^2} \]

\[\lambda_{\text{max}} T = 2.898 \times 10^{-3} \text{ m-K} \quad l(\lambda, T) = \frac{2\pi c^2 h}{\lambda^5} \left[\frac{1}{e^{\lambda / kT} - 1} \right] \quad R(T) = \varepsilon \sigma T^4 \]

\[h\nu = K_{\text{max}} + \phi \quad n\lambda = 2 \text{dsin} \theta \quad F_{\text{cont}} = k_c \frac{q_1 q_2}{r^2} \quad F_{\text{radiat}} = \frac{mv^2}{r} \quad a_0 = \frac{4\pi \varepsilon_0 h^2}{mc^2} = 0.529 \text{ Å} \]

\[\lambda = h/p \quad p = mk \quad \Delta x \Delta p_x \geq \hbar/2 \quad \Delta E \Delta t \geq \hbar/2 \quad v_{\text{ph}} = \omega/k \quad v_{\text{gr}} = d\omega/dk \]

\[e^{i\kappa x} = \cos \kappa x + i \sin \kappa x \quad \cos x = \frac{1}{2} \left[e^{ix} + e^{-ix} \right] \quad \sin x = \frac{1}{2i} \left[e^{ix} - e^{-ix} \right] \]

\[\sin 2t = 2 \sin t \cos t \quad \cos 2t = \cos^2 t - \sin^2 t = 2 \cos^2 t - 1 = 1 - 2 \sin^2 t \quad \psi(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \left(\frac{2\pi n}{\ell} x \right) + \sum_{n=1}^{\infty} b_n \sin \left(\frac{2\pi n}{\ell} x \right) \quad \text{with } k_n = \frac{2\pi n}{\ell} \quad \text{and} \]

\[a_0 = \text{aver. of } \psi \text{ over } \ell, \quad a_n = \frac{2}{\ell} \int_0^\ell \psi(x') \cos \left(\frac{2\pi n}{\ell} x' \right) dx', \quad b_n = \frac{2}{\ell} \int_0^\ell \psi(x') \sin \left(\frac{2\pi n}{\ell} x' \right) dx' \]

\[\psi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} c(k) e^{ikx} dk, \quad \text{with } c(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \psi(x') e^{-ikx'} dx' \]

\[\hat{H} \Psi = i\frac{\partial \Psi}{\partial t} \quad \hat{H} = \hat{K} + V \quad \Psi = \psi e^{iEt/\hbar} = e^{-i\omega t} \quad \hat{H} \Psi = E \Psi \]

\[\hat{p}_x = -i\hbar \frac{\partial}{\partial x} \quad \hat{K}_x = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \quad \Delta A = \sqrt{\langle A^2 \rangle - \langle A \rangle^2} < A > = \int \psi^* \hat{A} \psi dx \quad \hat{A}_\alpha = a\psi_a \]
\[k = \sqrt{\frac{2m(E-V)}{\hbar^2}} \quad \psi \propto e^{ikx} \quad \psi \propto \sin kx, \cos kx \quad \kappa = \alpha = \frac{1}{\delta} = \sqrt{\frac{2m(V-E)}{\hbar^2}} \quad \psi \propto e^{ikx} \]

\[\psi_n = \left(\frac{2}{L} \right)^{1/2} \sin \left(\frac{n\pi x}{L} \right) \quad E_n = \frac{\pi^2 \hbar^2 n^2}{2mL^2} \]

\[\psi_n = H_n(x)e^{-ax^2/2} \quad \alpha = \sqrt{\frac{m\kappa}{\hbar^2}} \quad \omega = \sqrt{\frac{k}{m}} \quad E_n = \left(n + \frac{1}{2} \right) \hbar \omega \]

\[\psi_j = Y_{am}(\theta,\phi) = \Theta_{am}(\theta)\Phi_{am}(\phi) \quad E_j = \frac{\hbar^2 J(J+1)}{2l} \quad l = \frac{m_m z - m_z R_{ss}}{m_s + m_z} \]

\[T = \left[1 + \frac{V_0^2 \sin^2(\kappa L)}{4E(E-V_0)} \right]^{-1} \quad T \approx \frac{16E}{V_0} \left[1 - \frac{E}{V_0} \right] e^{-2\kappa L} \quad \text{(when } \kappa L \gg 1) \]

\[T_{FE} \approx \exp \left[\frac{4\phi^{3/2}2m_e}{3e\hbar^2} \left(\frac{2m_e}{eV} \right) \right] \quad l_{STM} \approx e^{-2KL} \]

\[\lambda_a = f_{col} T_a \quad T_a = \exp \left[-4\pi Z \sqrt{\frac{0.0993 \text{ MeV}}{E_a(\text{MeV})}} + 8 \sqrt{\frac{Z R_{\text{nuc}}(m)}} \right] \]

\[F_{\text{coul}} = k \frac{q_1 q_2}{r^2} \quad F_{\text{radial}} = \frac{mv^2}{r} \quad E_n = -\frac{Z^2 e^2}{8\pi \epsilon_0 m_r n^3} = -\frac{136 Z^2}{n^2} (eV) \quad r_n = \frac{4\pi \epsilon_0 \hbar^2}{m_e Z e^2} n^2 = a_0 \frac{n^2}{Z} \]

\[a_0 = \frac{4\pi \epsilon_0 \hbar^2}{m_e e^2} = 0.529 \ \text{Å} \quad \nu_n = \frac{nh}{m_r r_n} \quad \frac{1}{\lambda} = Z^2 R_{ss} \left[\frac{1}{n^2} - \frac{1}{n_v^2} \right] \quad \mu_e = m_e \left[\frac{M}{M + m} \right] \]

\[x = r \sin \theta \cos \phi \quad y = r \sin \theta \sin \phi \quad z = r \cos \theta \quad dV = r^2 \sin \theta \, dr \, d\theta \, d\phi \]

\[\psi_{n_m}(r,\theta,\phi) = R_{n}(r) \Theta_{nm}(\theta) \Phi_{nm}(\phi) \quad P_{n_m}(r) = r^2 R_{n_m}(r) \quad \int \propto \left| \frac{\psi_{\text{final}}(\hat{r})}{\psi_{\text{initial}}(\hat{r})} \right|^2 \]

\[\mu = iA \quad E = -\bar{\mu} \cdot \bar{B} \quad \bar{\mu} = -\frac{e}{2m} \frac{\vec{L}}{\hbar} = -\mu_B \frac{\hat{L}}{\hbar} \quad \bar{s} = -\frac{e}{m} \hat{s} = -2 \mu_B \frac{\hat{s}}{\hbar} \]

\[\mu_B = \frac{e\hbar}{2m_e} = 9.274 \times 10^{-24} \text{ J/Tesla} \]

\[\psi_{j}^{\text{MOC}}(\hat{r}) = \sum_{A_i} c_{A_i} \phi_{A_i}(\hat{r}) \]

---Tear off this sheet and begin exam---
Physics 9HE-Modern Physics
Quiz 2
27 February, 2014
(100 points total)

Name (printed)_______________________________________
Name (signature)_______________________________________
Student ID No.___

Yes ___ No___ would like to go on the tour of LBNL on 8 March

If Yes, I would like to bring ____ guests

If Yes, I Do___Do Not___have transportation, and

If Yes, I have/can arrange a vehicle Yes___No___

If yes, I will have room for _____people

[1] (25 points)
Would the following be a suitable approximate wavefunction for two neutrons with spin \(\frac{1}{2} \) which overlap in space, where a and b represent two different sets of quantum numbers including the neutron spin and C is a suitable normalization constant?

\[
\Psi(\vec{r}_1, \vec{s}_1; \vec{r}_2, \vec{s}_2) = C[\Phi_a(\vec{r}_1, \vec{s}_1)\Phi_b(\vec{r}_2, \vec{s}_2) + \Phi_b(\vec{r}_1, \vec{s}_1)\Phi_a(\vec{r}_2, \vec{s}_2)]
\]

Explain why or why not using the permutation operator.

\[
\Psi(\vec{r}_1, m_{s_1}, \vec{r}_2, m_{s_2}) = \hat{\tau}_{12}[\phi_a(\vec{r}_1, m_{s_1})\phi_b(\vec{r}_2, m_{s_2}) + \phi_b(\vec{r}_1, m_{s_1})\phi_a(\vec{r}_2, m_{s_2})] = [\phi_a(\vec{r}_2, m_{s_2})\phi_b(\vec{r}_1, m_{s_1}) + \phi_b(\vec{r}_2, m_{s_2})\phi_a(\vec{r}_1, m_{s_1})] = + \Psi(\vec{r}_1, m_{s_1}, \vec{r}_2, m_{s_2}) \Rightarrow \text{SYMMETRIC, SO NOT OK FOR NEUTRONS}
\]
[2] (50 points)
The manganese atom has 25 electrons.
(a) Write down its complete electronic configuration.

\[1s^22s^22p^63s^23p^63d^54s^2 \]

(b) In a photoelectric effect experiment, the Mn 2p energies are found to be split into two separate levels. What is the origin of this splitting?

Spin-orbit splitting, so 2p (\(\ell = 1 \)) splits into \(j = 2p_{1/2} \) and \(2p_{3/2} \)

(c) What would be the total spin quantum number \(S \) of the manganese atom in its ground state?

The five 3d electrons will all couple with their spins in the same direction so one can write:
\(3d^5 \uparrow\uparrow\uparrow\uparrow\uparrow \) and \(S = 5/2 \)

(d) Treating the total spin as a typical quantum mechanical angular momentum, and noting that the total orbital angular momentum \(L \) would be zero for this case, how many total states would the manganese atom have in a magnetic field, specify the quantum number involved, and give the eigenvalues associated with it.

6 states, of \(m_s = 5/2, 3/2, 1/2, -1/2, -3/2, -5/2 \), and a vector diagram as below,
and eigenvalues of $S^2 = \hbar^2 5/2(5/2+1) = \hbar^2 35/4$, and $S_z = \hbar m_s$.

(e) If the manganese atom were placed in a strong magnetic field of 1 Tesla along the z axis, what would the energy spacing be between adjacent levels?

Just use these given equations, and note that B is along z, so the dot product just picks up the z component, and with some given equations we have

$$E = -\mu_s \cdot \vec{B} = -\mu_s \vec{z} = -2 \mu_B \frac{\hat{z}}{\hbar}$$

$$\mu_B = \frac{e\hbar}{2m_e} = 9.274 \times 10^{-24} \text{ J/Tesla}$$

which combine for our special case to give

$$E = -\mu_s \cdot \vec{B} = -\mu_s z B_z = -\left[-2 \mu_B \frac{\hat{z}}{\hbar} \right] B_z = -2 m_B \frac{\hbar m_s}{\hbar} B_z = [2 \times 9.274 \times 10^{-24} \text{ J/Tesla}] (m_B B_z).$$

Difference between two adjacent m_s values is just a dimensionless 1, so

$$\Delta E = [2 \times 9.274 \times 10^{-24} \text{ J/Tesla}] (1 \times 1) = 1.8548 \times 10^{-33} \text{ J}$$

[3] [25 Points]
The iso-probability contour of one of the molecular electronic wavefunctions of CO is shown below, with the sign of the wavefunction also indicated. Show with a sketch and an equation the approximate atomic orbital makeup of this wave function, and indicate whether it is bonding on anti-bonding.

More than you ever wanted to know here is from Slide 20 of Set 6 (next page), with the equation for what is called $1\pi_x$ here being

$$\varphi_{1\pi_x} \approx C_{C_2p_x} \varphi_{C_2p_x} + C_{O_2p_x} \varphi_{O_2p_x} \quad \text{and} \quad C_{O_2p_x} \text{ clearly greater than } C_{C_2p_x}$$
The LCAO or tight-binding picture for CO:

\[\varphi_j^{MO}(\vec{r}) = \sum \alpha_{i,j} \varphi_{Ai}(\vec{r}) \]

---End of examination---