1. \[R_{11} \text{ is parallel equivalent resistance for } R_2 + R_3 \]
\[\frac{1}{R_{11}} = \frac{1}{R_2} + \frac{1}{R_3} = \frac{R_2 + R_3}{R_2 R_3} \]
\[R_{11} = \frac{R_2 R_3}{R_2 + R_3} \]
\[V_{eq} = R_{11} + R_4 = \frac{R_2 R_3}{R_2 + R_3} + R_4 \]

b) Current at node a: \[I_1 = I_4 + I_5 \]

Loop 1: \[E_1 + V_2 - I_4 V_{eq} - I_1 R_1 = 0 \]
Loop 2: \[-E_2 + V_3 - I_5 R_5 + I_4 V_{eq} = 0 \]
Loop 3: \[E_1 + V_3 - I_5 R_5 - I_1 R_1 = 0 \]

Any 3 of the above 4 equations is acceptable.

c) If \(I_4 \) is known, \(V_{eq} = \) voltage across \(R_{eq} = I_4 R_{eq} \)
\[V_4 = \text{voltage across } R_4 = I_4 R_4 \]
Let \(V_2 = \text{voltage across } R_2 \)
Let \(V_3 = \text{voltage across } R_3 \)
Since \(R_2 \) is in parallel with \(R_3 \), \[V_2 = V_3 = V_{eq} - V_4 \]
\[I_2 = \frac{V_2}{R_2} = \frac{V_{eq} - V_4}{R_2} = \frac{I_4 (R_{eq} - R_4)}{R_2} \]
\[I_3 = \frac{V_3}{R_3} = \frac{V_{eq} - V_4}{R_3} = \frac{I_4 (R_{eq} - R_4)}{R_3} \]
2. \(\vec{F} = q \frac{\vec{V} \times \vec{B}}{c} \)

\(\vec{B} = 5000 \text{ Gauss} \) \(\vec{F} = (4.8 \times 10^{-10} \text{ cm})(3 \times 10^8 \text{ cm/sec}) \)

\(\vec{F} = \frac{5000 \text{ Gauss}}{3 \times 10^8 \text{ cm/sec}} \)

\(\vec{F} = 1.2 \times 10^{-8} \text{ dyne} \)

\(\vec{V} \times \vec{B} \) is into paper, since \(e^- \) is negative. \(\vec{F} \) points out of paper if \(\vec{V} + \vec{B} \) are as shown.

Motion is a helix. \(\vec{V} \) along direction of \(\vec{B} \) is unchanged.

Redraw diagram with \(\vec{B} \) out of paper, \(\vec{V} \), out of paper. So helix spirals out of paper counter-clockwise as \(\vec{B} \) points out of paper.

\(m \frac{\Delta \vec{V}}{\Delta t} = B \frac{\vec{q} \times \vec{E}}{c} \)

\(\frac{\Delta \vec{V}}{\Delta t} = \frac{Bq}{mc} \left(\frac{5000 \text{ Gauss}}{7.1 \times 10^{-28} \text{ g}} \right)(3 \times 10^8 \text{ cm/sec}) \)

\(\frac{\Delta \vec{V}}{\Delta t} = 8.7 \times 10^{10} \text{ cm/sec} \)

3. \(F = \frac{2 \pi I J_2 L}{c^2 r} \)

Since \(e = 4.8 \times 10^{-10} \text{ cm} = 1.6 \times 10^{-19} \text{ coul} \), \(I \times 4.8 \times 10^{-10} \text{ cm} \) \(\frac{4.8 \times 10^{-10} \text{ cm}}{1.6 \times 10^{-19} \text{ cm}} = 3 \times 10^9 \text{ cm} \)

\(F = 2 \left(\frac{5A \times 10A \times 3 \times 10^9 \text{ cm}}{3 \times 10^8 \text{ cm/sec}} \right)^2 (200 \text{ cm}) = 100 \text{ dyne} \)

Wire attract if the currents go in the same direction.

Prove this by thinking about \(\vec{B} \) field directions & forces.

By right-hand rule, \(\vec{B} \), at position of wire 2 goes into paper.

\(\vec{F} = I \frac{\vec{V} \times \vec{B}}{c} \) points to left, i.e. force between 2 wires is attractive, with currents in the same direction as shown.

4. \(\frac{dB}{dr} = \frac{I \delta x}{c r^2} \) Suppose the wire extends from \(-a \) to \(a \) along x-axis.

\(\vec{B} = \frac{I}{c} \int_{-a}^{a} \frac{y \hat{z}}{r^2} = \frac{I}{c} \int_{-a}^{a} \frac{y \hat{z}}{r^2} = \frac{I}{c} \left[\frac{x}{\sqrt{x^2 + y^2}} \right]_{-a}^{a} \)

\(\vec{B} = \frac{I}{c} \left(2a \right) = \frac{I}{c} (2a) = \frac{2I \hat{z}}{c} \)

From Ampere's law:

\(\int \vec{B} \cdot d\vec{S} = 4\pi I \) \(\Rightarrow \vec{B} (2\pi r) = \frac{4\pi I}{c} \)

\(c \hat{r} \times \vec{B} \) is around wire.

\(\vec{B} = \frac{2I}{c} \hat{r} \) if \(I \) is along +x axis, \(\vec{B} \) is in \(\hat{\phi} \) direction.
5. \[J = \frac{A r^2}{c} \quad 0 \leq r \leq a \]

Ampere's law, \(\oint_C \mathbf{B} \cdot d\mathbf{s} = \frac{4\pi}{c} \int_S \mathbf{J} \cdot d\mathbf{a} \), where \(C \) is curve bounding surfaces.

\(0 \leq r \leq a \), take \(C \) to be circle of radius \(r \Rightarrow B(2\pi r) = \frac{4\pi}{c} \int_0^a A r^2 (2\pi r')dr' \)

\[B(2\pi r) = \frac{8\pi^2 A}{c} \int_0^r r^3 dr' = \frac{8\pi^2 A r^4}{c} \]

\(0 \leq r \leq a \),
\[B = \frac{\pi A r^3}{c} \]

\(r \geq a \), C is circle of radius \(r \),
\[B(2\pi r) = \frac{4\pi}{c} \int_0^a A r^2 (2\pi r'dr') \]

\(r \geq a \),
\[B = \frac{\pi A a^4}{c} \]

6. \(100 \text{ V} \) a) Capaetor charged to \(100 \text{ V} = \frac{1}{2} \text{ statvolt} \)

\[E_0 = \frac{1}{3} \text{ statvolt} \text{ cm} = \frac{1}{2} \text{ statvolt} \text{ cm} = \frac{4\pi}{c} \text{ statvolt} \text{ cm} = \frac{1}{2} \text{ statvolt} \text{ cm} \]

\[E' = E_0 - (0.33 \text{ statvolt/cm}) = 4.13 \times 10^{-1} \text{ statvolt/cm} = 0.41 \text{ statvolt/cm} \]

\[\sigma_0 = \frac{E'}{4\pi} = 3.28 \times 10^{-2} \text{ statau/cm}^2 \]

b) If capacitor plates are parallel to \(xy \) plane, there is no length contraction \(\sqrt{1 - \beta^2} = \sqrt{1 - (0.8)^2} = 1.25 \)

\[E' = E_0 = 0.33 \text{ statvolt/cm}, \quad \sigma = \sigma_0 = 0.026 \text{ statau/cm}^2 \]

7. \[E_{\text{max}} \text{ in left occurs when } e^- \text{ is at origin in left frame.} \]

\[E_{\text{max}} = e \frac{1}{8\gamma^2(1 - \beta^2)^{3/2}} \frac{y}{\sqrt{c^2 - v^2}} \]

\(\beta = 0.8, \gamma = \frac{1}{\sqrt{1 - \beta^2}} = \frac{1}{\sqrt{1 - 0.8^2}} = 1.67 \)

\[E_{\text{max}} = \left(1.67 \right) \left(4.8 \times 10^{-10} \text{ cm} \right) = 8.0 \times 10^{-7} \text{ statvolt/cm} \]

\[\overrightarrow{F}_{\text{max}} = \left(8.0 \times 10^{-7} \text{ statvolt/cm} \right) \left(0.01 \text{ cm} \right) = 3.84 \times 10^{-15} \text{ dyna} \]

\[\overrightarrow{F}_{\text{max}} = \left(3.84 \times 10^{-15} \text{ dyna} \right) \]

Field lines of traveling \(e^- \), as viewed from left frame, look like whiskeehom (a pancake, according to Pincell).