Electric Field of Point Charge Moving with Constant Velocity

In frame F, charge Q is at rest at the origin. \(\mathbf{E} = \frac{Q}{r^2} \)

In the x'z plane, the fields are:

\[
E_x = \frac{Q \cos \theta}{r^2} \left(\frac{x'}{r^2} + z^2 \right)^{3/2} \\
E_z' = \frac{Q \sin \theta}{r^2} \left(\frac{z'}{r^2} + z^2 \right)^{3/2}
\]

\(F' \) moves in -x direction with speed v, with respect to F.

Then Q moves in +x' direction with speed v in F'.

\(x = y(x' - \beta ct'), \ y = y', \ z = z', \ ct = \gamma (ct' - \beta x') \)

At \(t' = 0 \), when Q passes the origin in F',

\[
E_x' = \frac{Q x'}{\left((y')^2 + z'^2 \right)^{3/2}} \\
E_z' = \frac{Q z'}{\left((y')^2 + z'^2 \right)^{3/2}}
\]

Note \(\frac{E_z'}{E_x'} = \frac{z'}{x'} \), i.e. \(\mathbf{E}' \) makes same angle with x' axis as does \(r' \).

\(\mathbf{E}' \) points radially outward along a line drawn from instantaneous position of Q.

\[E'^2 = E_x'^2 + E_z'^2 = \frac{y^2 Q^2 (x'^2 + z'^2)}{\left((y')^2 + z'^2 \right)^3} \]

\[= \frac{Q^2 (x'^2 + z'^2)}{y^2 \left[x'^2 + (1 - \beta^2) z'^2 \right]^3} \]

\[= \frac{Q^2}{\left[x'^2 + (1 - \beta^2) z'^2 \right]^3} \]

\[= \frac{Q^2}{\left[x'^2 + (1 - \beta^2) \sin^2 \theta' \right]^3} \]

\[\|
\mathbf{E}' \| = \frac{Q}{\gamma^2 r'^2 (1 - \beta^2 \sin^2 \theta')^{3/2}} \]

\[\Rightarrow \frac{Q}{\gamma^2 r^2 (1 - \beta^2 \sin^2 \theta)^{3/2}} \]

\[\Rightarrow \frac{Q}{\rho^2} \]

For large \(\beta \) (near 1), \(\mathbf{E} \) is longer by factor \(\gamma \) in + direction \(\frac{x'}{\rho} \)

and short by \(\gamma^2 \) in \(\theta ' \) direction

No stationary charge distribution could have these field lines.

Note \(\int E' \cdot d\mathbf{s}' = 0 \)