LRC Circuits and Resonance

Physics 116A 2009
D. Pellett

Brief Outline
Series LRC Circuit and Resonance

- Current magnitude is maximum when reactance $X = 0$

- Circuit with at least one capacitor and one inductor is in resonance when the imaginary part of its impedance (or admittance) equals 0

- Circuit above in resonance when $\omega L - \frac{1}{\omega C} = 0$

\[
\omega_R = \sqrt{\frac{1}{LC}}, \quad f_R = \frac{1}{2\pi} \sqrt{\frac{1}{LC}}
\]

\[
\begin{align*}
V_{\text{out}} &= iR \\
Z &= j\omega L + \frac{1}{j\omega C} + R \\
i &= \frac{V_{\text{in}}}{Z} = \frac{V_{\text{in}}}{R + j[\omega L - \frac{1}{\omega C}]} = \frac{V_{\text{in}}}{R + jX}
\end{align*}
\]
Q and Bandwidth

- Refer to Q definition in text
- The Q derivation for a series LRC circuit was done in class on Friday
- Consider transfer function for series LRC network with output taken across the resistor
 - Gives band pass filter
Bandwidth for Series LRC Band Pass Filter

- Find half-power points ω_1, ω_2 for band pass filter
- Write $H(j\omega)$ in terms of ω_R and

$$Q = \frac{1}{R} \sqrt{\frac{L}{C}} = \frac{\omega_R L}{R} = \frac{1}{\omega_R R C}$$
- Half power when $|H(j\omega)| = 1/\sqrt{2}$

$$H(j\omega) \equiv \frac{V_{out}}{V_{in}} = \frac{R}{R + j[\omega L - \frac{1}{\omega C}]} = \frac{1}{1 + jQ[\frac{\omega}{\omega_R} - \frac{\omega_R}{\omega}]}$$

Half power when $Q \left[\frac{\omega}{\omega_R} - \frac{\omega_R}{\omega} \right] = \pm 1$

$$\omega^2 \pm \frac{\omega_R}{Q} \omega - \omega_R^2 = 0$$

$$\omega = \pm \frac{\omega_R}{2Q} \pm \omega_R \sqrt{\left(\frac{1}{2Q} \right)^2 + 1}$$

Solutions ($\omega > 0$): $\omega_1 = -\omega_R \frac{2Q}{Q} + \omega_R \sqrt{\left(\frac{1}{2Q} \right)^2 + 1}$

$$\omega_2 = \frac{\omega_R}{2Q} \pm \omega_R \sqrt{\left(\frac{1}{2Q} \right)^2 + 1}$$

Bandwidth $\equiv \omega_2 - \omega_1 = \frac{\omega_R}{Q}$
Resonance for Parallel LRC Circuit

- See text: parallel R, L, C driven by current source \(i(t) \)

 \[
 V_{\text{out}} = \frac{i}{Y}
 \]

- At resonance, \(Y \) has imaginary part = 0

 \[
 Y = \frac{1}{j\omega L} + j\omega C + \frac{1}{R} = \frac{1}{R} \quad \text{at resonance}
 \]

- Again, \(\omega_R = \sqrt{\frac{1}{LC}} \), \(f_R = \frac{1}{2\pi} \sqrt{\frac{1}{LC}} \)

- \(Q \) defined as before now gives (for parallel resonance)

 \[
 Q = R\sqrt{\frac{C}{L}} = \frac{R}{\omega_R L} = \omega_R RC
 \]

- Also read about high-Q coils. This can be used to model a high-Q coil with series resistance \(R_s \) in parallel with \(C \) as a parallel RLC circuit with a resistance-free \(L \) and effective parallel resistance \(L/R_s C \)