Logic circuits & how they work

(a) Evolution from RTL inverter to DTL NAND to TTL NAND (and Schottky TTL).

BJT as switch - cutoff or saturation (discussed earlier)

[Diagram of BJT circuit]

For example (not TTL levels)
- \(V_{in} \) low means \(<0.2V \)
- \(V_{in} \) high means \(\geq 2V \)

If \(V_{in} \leq 0.2V, V_{BE} < 0.5V \)
BJT is cut off, \(V_{out} \approx 5V \)

If \(V_{in} \geq 2V \), the transistor is in saturation,
\(V_{BE} \approx 0.7V, V_{out} \approx 0.2V \),
acting as logic inverter

DTL NAND gate uses diodes to form logic (Fig. 7.26 in text)

[Diagram of DTL NAND gate with diodes]

If either \(V_1 \) or \(V_2 \) is at 0.2,
\(V_3 = 0.9V \), not enough to turn BJT on

(E.g., if \(V_1 = 0.3, V_2 = 5V \)
\(D_2 \) is reverse biased,
bar \(D_2 \) pulls BJT input down)

If both \(V_1 \) and \(V_2 \) are +5
current flows through \(D_3 + D_4 \)
to pull \(V_{BE} \) up to 0.8V
and output goes low.

\[\begin{array}{c|c|c|c}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & \overline{A} \\
1 & 0 & 1 & \overline{B} \\
1 & 1 & 0 & \overline{AB} \\
1 & 1 & 1 & \overline{AB} (NAND) \\
\end{array} \]

\(V_2 \) and \(V_3 \) are used to increase the
turn-on threshold at the input
due to their forward voltage drop.

\(* Assume forward drop for diode is 0.7V. \)
Improvement to make TTL faster

- Totem pole output and transistor input replacing diodes (Eq. 7.32). Relation between V_{dr}, V_{out} is the same.
- Give more drive current in the high state and faster response.

Start here

Lower impedance path in high state than BTL or DTL.

Changes through Q_4, D and 100Ω in high state.

Load capacitive.

Dual emitter transistor replaces diode logic in DTL

Note the parallel (to DTL)

V_1 or V_2 low \Rightarrow ICQ1 > 0, Q_2 off \Rightarrow output high
V_1 and V_2 high \Rightarrow ICQ1 < 0, Q_2 on \Rightarrow output low $Y = \bar{A} + \bar{B} = \bar{A} \bar{B}$ (see prob. handout)

Totem pole output stage

Q_2 controls Q_0 and Q_3

Q_2 off: Q_4 on, Q_3 off.

\Rightarrow output high

Q_2 on:

$V_{CE_2} = 0.2$ (saturation)

$V_{B_3} = 0.8$ (saturation)

$V_{B_4} = V_{CE_2} = 1.0V$

$V_{out} = 0.2V$ (V_{CE_2}) (output)

The forward voltage drop across D is big enough to keep $V_{BE_4} < 0.5V$ (off)

$V_{BE_4} + V_D = 1 - 0.2 = 0.8V$

$< \text{sum of cut-in voltage}$
Saturation may lead to long storage time, slowing BJT "off" transition (base region flooded with minority carriers, slowly diffuse out & be depletion region). Prevent saturation with Schottky diode.

- Metal-semiconductor junction - majority carrier device.
- Forward voltage drop 0.4 V rather than 0.7 V.
- Use to prevent BJT base-collector diode from being forward biased, prevent saturation.

\[
\begin{align*}
\text{Schottky Barrier} & \quad \text{N}^+ \quad \text{N} \\
\text{Al} & \quad \text{Lightly Doped} \\
\end{align*}
\]

\[
\begin{align*}
E_F & = E_F^s \\
E_F & = E_F^s \\
\text{Ref.: } & \text{G. Neudeck} \\
\text{PN Junction Diode} & \text{Addison Wesley}
\end{align*}
\]

For forward bias reduces the net field, raising the \(E_F \) level in the bulk, more electrons get over from semiconductor there is a depletion region, but there are no minority carriers.

For diode contact, use heavy doping, get tunneling through a narrow barrier (\(E_F \) within 3 kT of \(E_F^s \) for degenerate semiconductor)

SCHOTTKY TTL circuit - slightly different. See text.
TTL CIRCUIT MODIFICATIONS TO ALLOW USE WITH DATA BUS - OUTPUT INTERCONNECTION

OPEN COLLECTOR OUTPUT:

- **Rest on circuit**: open or closed switch to ground
- **High state**: (low state)

Simplest case:
- **Inverters**
- **Pull-up resistor**: e.g. 1kΩ

- **A switch**
- **Outputs "bussed"**
- **Open collector** (called "wired or" although logic may vary)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Y</th>
<th>(with pull-up)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>L</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>H</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>L</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>L</td>
<td></td>
</tr>
</tbody>
</table>

Advantage: Simple

Disadvantage: can be slow, depending on R value.

Two-input multiplier:

\[Y = D_1 \cdot S + D_0 \cdot \bar{S} \]

- **Simplified logic table**
- **X = "don't care"**
- **Y = D_0**
- **Y = D_1**
Tri-state output:

3 possibilities: H, L, high impedance ("Z")

Better way to share I/O lines - active pull-up in high state, no external pull-up required.

TI circuit modification:

\[\text{IF } OE \text{ is low, } Q_1 \text{ pulls the base of } Q_2 \text{ low, turning it off.} \\
\text{The } OE \text{ connection through the diode pulls the base of } Q_4 \text{ low, turning it off. Since } Q_2 \text{ is off,} \\
\text{the base of } Q_3 \text{ is at ground, so } Q_3 \text{ is off. Thus the} \\
\text{output is floating.} \Rightarrow \text{high impedance state.} \\
\text{If } OE \text{ is high, it has no further effect on circuit operation, as you can check.} \]

Two-input multiplexer:

\[Y = D\overline{OE} + D1S \]

"0" indicates tri-state output.
n-MOS and p-MOS transistors as switches and CMOS inverter

(a) Enhancement mode MOSFET as inverter:

- **Threshold voltage** V_T

 - Approx. transfer characteristics:
 - FET below V_T (off)
 - FET in ohmic region (on)

 So if we use logic levels with low $< V_T$ and high $\approx V_{DD}$, this is an inverter. Model MOSFET as an open switch with $V_{in} = $ low and closed switch (although with non-negligible resistance) with $V_{in} = $ high.

(b) By symmetry, p-MOS with source hooked to $+V_{DD}$ and drain through R to ground would be open switch with $V_{in} = $ high, closed switch (with non-negligible R) with $V_{in} = $ low.

 The switch is closed to $+V_{DD}$ so output would be high with input low:

(c) CMOS inverter

- **CMOS inverter diagram**

<table>
<thead>
<tr>
<th>V_{in}</th>
<th>V_{out}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Circuit structure - See text, Fig. 8.36

(See problem set for CMOS NAND example.)