Pulse problem 0:

\[V_{out}(t) = V(1 - e^{-t/\tau}) \]

where \(\tau = RC \) \((BW = \frac{1}{2\pi f_c} = \frac{1}{2\pi \tau}) \)

\(t_1: \) \(V_{out}(t_1) = 0.1V \Rightarrow 0.1V = V(1 - e^{-t_1/\tau}) \)

\(0.1 = (1 - e^{-t_1/\tau}) \)

\(e^{-t_1/\tau} = 0.9 \)

\(t_1 = -\tau \ln 0.9 = +\tau \ln 10/9 \)

\(= \tau (\ln 10 - \ln 9) \).

\(t_2: \) \(V_{out}(t_2) = 0.9 \Rightarrow 0.9V = V(1 - e^{-t_2/\tau}) \)

(similar algebra to above)

\(t_2 = \tau \ln 10 \).

\[RT = t_2 - t_1 = \tau \ln 9 \]

\[\frac{\ln 9}{2\pi BW} = \frac{0.35}{BW} \]

Pulse Problem 1:

Note: terminology of problem is a bit unclear.

0.9V = threshold for Schmitt trigger low to high transition. 1.7V = threshold for high to low.

Neglect Schmitt trigger propagation delay and assume the output is a step funx. (Actual device will have delay, pulse rise time).

width of output pulse:

Consider \(V_b \). At \(t = 10\mu s \), the positive-going edge of \(V_b \) leads to \((t \geq 10\mu s) \):

\[V_b(t') = 3.1V(e^{-t'/\tau})u(t') \]

where \(t' = t - 10\mu s \), and

\[\tau = RC = 1000\mu s \times 100 \times 10^{-12} = 0.10 \mu s \]

The positive transition causes \(V_{out} \) to go to 3.3V at \(t = 10\mu s \).

It falls to 0.2V when \(V_b = 0.9V \),

\[0.9V = 3.1V(e^{-t'/0.10\mu s}) \]

\(t' = 0.10 \mu s \ln(3.1/0.9) = 0.12 \mu s \)

(width of "notch" in output pulse.)

⇒ circuit produces negative-going pulse synchronized with trailing edge of input pulse.
Pulse problem 2:

\[RT = \frac{0.35}{BW} \]

\[BW = f_c > \frac{1}{2\pi RC} = \frac{1}{2\pi \times 1000 \times 2 \times 50 \times 10^{-12}} = 3.2 \text{ MHz} \]

\[RT = \frac{0.35}{3.2 \text{ MHz}} = 110 \text{ ns} \]