Since this is the same as Table 12.20, then the state diagram is given in Fig. 12.46.

Prob. 12.44

Transition K. Maps

\[Q_1 = Q_0
\]

\[Q_2 = \overline{Q_0} \]

\[J_1 = \overline{Q_1} \]

\[K_1 = Q_2 \]

\[J_2 = Q_1 \]

\[K_2 = 1 \]

State:

\[Q_0, Q_1 \]

\[J = d \]

\[K = \overline{Q_0} \]

\[C = 1 \]

\[D = 0 \]

Alternative analysis

This network is simpler than the one given in Fig. 12.45.

\[D_1 = Q_1 \]

\[D_2 = Q_2 \]

\[D_3 = Q_2 \]
Physics 116B Winter 2007 Problem Set 5 Solutions
From Instructor's Manual for Fundamentals of Electrical Engineering 2nd Ed. by Bobrow
© 1996 Oxford University Press

Special Problem 1
(a) State diagram

(b)(i) 5 states: 111 → 011 → 001 → 100 → 110 → 111...
(ii) yes.

Special problem 2:
Transition Karnaugh maps:

\[J_A = C \overline{Q}_B \]
\[K_A = C + \overline{Q}_B = \overline{CQ}_B \]
\[J_B = C \overline{Q}_A \]
\[K_B = CQ_A \]
