1. (a) $X \oplus Q_B = \overline{Q_A} (t+1)$

<table>
<thead>
<tr>
<th>X</th>
<th>Q_A</th>
<th>Q_B</th>
<th>$\overline{Q_A} (t+1)$</th>
<th>$Q_B (t+1)$</th>
<th>$X \oplus Q_B$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

(b)

(c) Min. period = Max. FF delay + Max. XOR delay + Min. Setup time = 30 ns + 18 ns + 25 ns = 73 ns

Max. Frequency = $\frac{1}{\text{period}} = \frac{1}{73 \text{ns}} = 13.7 \text{ MHz}$

(d) $00 \rightarrow 10 \rightarrow 11 \rightarrow 01 \rightarrow 00$ etc. This is counting backward in Grey code.

(e) The input could cause D_A to change within the setup time prior to the clock pulse when the input should be stable. This could lead to metastability in the D flip-flop (it could get "stuck" in some improper state for an unknown length of time). A remedy is to include one or more D flip-flops synchronized with the system clock between X and the XOR input node.
2. (a) Leading edge triggered

(b) Transition map: \(F = 2 \)

\[F = 2: \]
\[
\begin{array}{cc}
00 & 01 & 10 \\
0 & \alpha & \beta \alpha \\
1 & 0 & \beta \\
\end{array}
\]

\[J_2 = \overline{x} + Q_1 \]
\[(= \overline{x} \overline{Q_1}) \]

(c) \[\begin{aligned}
Y &= \overline{x} \overline{Q_1} + \overline{x}Q_1Q_2 + x \overline{Q_1}Q_2 \\
&\text{(K. map no help)}
\end{aligned} \]
ii) Yes since charge remains on \(C \), \(i(t) \approx 0 \) since \(i(t) \) into \(-\text{input} + \text{op-amp} = 0\).

v) \(-\text{input} < +\text{input} \) so \(G \) is high.

(c) i) Now \(i(t) = -V_{\text{REF}}/R = -C \frac{dV_{\text{out}}}{dt} \)

\[
\frac{dV_{\text{out}}}{dt} = \frac{V_{\text{REF}}}{RC}
\]

ii) \(t = \left| \frac{V_{\text{out}}(t) - V_{\text{REF}}}{\frac{dV_{\text{out}}}{dt}} \right| = \frac{QR}{V_{\text{REF}}} = \frac{QR}{V_{\text{REF}}}
\]

iii) When \(V_{\text{out}} \) slightly exceeds 0 V, \(G \) goes low and the clock pulse to the counter is gated off. The clock had been gated on when \(W \) went high (with the counter reset) when switch \(Y \) was closed allowing the capacitor to start charging. Thus the number of counts = \(t/\text{clock period} \).

iv) \(N = \frac{t}{T} = \frac{QR}{V_{\text{REF}}T} = \frac{QR}{V_{\text{REF}}} f \propto Q \)

(\(T \) = clock period)