1. Gaussian wave functions (30 points)
Consider the wave function
\[\psi(x) = Ke^{ax-bx^2} \]
where \(K, a, \) and \(b \) are constants.

a. Use the condition of normalization to find \(K \).

b. Find the expectation values \(\langle x \rangle \) and \(\langle x^2 \rangle \).

c. Find the expectation values \(\langle p \rangle \) and \(\langle p^2 \rangle \).

d. Find the standard deviations (“uncertainties”) \(\Delta x \) and \(\Delta p \).

e. Show that the Heisenberg uncertainty relations hold.

f. Find the probability current \(J(x) \).

2. Probabilities (20 points)
Consider a wave function
\[\psi(x) = \begin{cases}
0 & x < -1 \\
A(-1 + x^2) & -1 < x < 1 \\
0 & x > 1
\end{cases} \]

(You might want to sketch \(\psi \) and \(|\psi|^2 \) to help visualize the problem.)

a. Find the constant \(A \) from the normalization requirement.

b. Let \(b \) be an arbitrary number between \(-1 \) and \(1 \). What is the probability that the particle is located in the range \(-1 < x < b\)?

c. If you answered question b correctly, you should find that the probability is one when \(b = 1 \). Explain why.