Syllabus, Fall Quarter, 2015

FRS 002, Sec. 012--Freshman Seminar
Applications of Waves—From Music to Imaging Atoms
CRN 54868

Class Meeting: Tues. 12:10 - 2:00 p.m., 416 Physics
First Class: Sept. 29, 2015

Instructor: Shirley Chiang, 235 Physics/Geology, Tel. (530) 402-7113 (office), FAX: (530) 752-4717; e-mail: chiang@physics.ucdavis.edu
Office hour: Tues. 2:00 – 2:30 in 235 Physics/Geology; and by appointment

Class web page http://www.physics.ucdavis.edu/Classes/FRS2/Frs2_Chiang.html
OR http://www.physics.ucdavis.edu, then click on Course Websites; under Fall 2015, look for Freshman Seminar Dr. Chiang
OR http://www.physics.ucdavis.edu/stm/index.html (Chiang group webpage), then click on Teaching; under 2015-2016, Freshman Seminar
Class Smartsite: https://smartsite.ucdavis.edu/portal. Login with your UC Davis Kerberos ID and passphrase. Look for site “FRS 002 012 FQ 2015”. Supplementary information is posted under Resources.

Prerequisite: High school algebra is required. High school physics is helpful, but not required.

Seminar goals:
The objective of the course is for students to see how physical principles can be used to explain the world around them. Wave theory will be applied to two very different topics, one classical and one modern: music and quantum mechanics. The course will use physics to study the properties and production of musical sounds and how musical instruments operate. Students will also learn about parts of a computer and will use a simple computer called an Arduino to make music using a piezoelectric buzzer. Modern quantum mechanics applies to the operation of the scanning tunneling microscope (STM), which is used to make atomic resolution images of surfaces. They will use the scientific method to design and construct their own musical instrument, which they will present to the class.

Grading:
Students will be graded on the quality of their participation in class discussion (1/3), on the quality of the oral presentation of their project(1/6), and on the execution of the final project and the final paper (1/2).

Course requirements:
1. Reading assignments are listed below. Please do required reading before the class indicated so that you are prepared to discuss it in class. Class participation is also required.
2. An independent project, presentation, and paper are required. See instructions and dates below.
Topical Outline, Course Schedule (subject to change), and Reading Assignments:
HSH=Benade book (required). Additional references posted on Smartsite under Resources.

<table>
<thead>
<tr>
<th>Week</th>
<th>Class Dates</th>
<th>Topics</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sept. 29</td>
<td>What is Physics? How do physical principles explain properties of devices? Introduction to wave properties and their relationship to musical properties—pitch, loudness, timbre.</td>
<td>HSH Chapters 1, 2, 4</td>
</tr>
<tr>
<td>2</td>
<td>Oct. 6</td>
<td>Further discussion of waves and demonstration of properties such as reflection, refraction, diffraction, beats, interference, and resonance.</td>
<td>HSH Chaps. 7; additional information at Smartsite under Resources/Wave Information.</td>
</tr>
<tr>
<td>3</td>
<td>Oct. 13</td>
<td>Harmonic analysis (why do different instruments playing the same note sound different to your ear?) Discussion of musical scales and their relationship to the mathematical ratios of frequencies of sound waves. Operation of piano and tuning it.</td>
<td>HSH Chap. 3, 5; additional information at Smartsite under Resources/Harmonics and scales.</td>
</tr>
<tr>
<td>4</td>
<td>Oct. 20, 12:30 p.m.</td>
<td>Special guest lecture by Robin Houston on aerophone (woodwind, brass) instruments.</td>
<td>HSH Chap. 8, 9</td>
</tr>
<tr>
<td>5</td>
<td>Oct. 27</td>
<td>Stringed and percussion instruments. Excerpts from video lecture: The Essence of an Instrument, by Charles Taylor</td>
<td>HSH Chap. 6</td>
</tr>
<tr>
<td>5</td>
<td>E-mail note</td>
<td>To Prof. Chiang by Fri. Oct. 30 describing proposed project.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Nov. 3</td>
<td>Arduino lab. Making music with a simple computer system.</td>
<td>Lab writeup on Smartsite under Resources.</td>
</tr>
<tr>
<td>7</td>
<td>Nov. 10</td>
<td>Guest lecture by Bret Stenger on low energy electron microscopy (LEEM) to study surfaces. Lab tour (122A Kemper).</td>
<td>See LEEM article on Smartsite under Resources/Quantum Mechanics.</td>
</tr>
<tr>
<td>8</td>
<td>Nov. 17</td>
<td>Computers -- what’s inside and how do they work? Operation of computerized music and stereo systems. Wave theory and probability related to quantum mechanics.</td>
<td>Assignment to look up a computer part and report on it; see details at Smartsite Wiki.</td>
</tr>
<tr>
<td>9</td>
<td>Nov. 24</td>
<td>Operation of the STM, imaging atoms, and relevance to new advances in computer technology. Lab tour (10 Physics).</td>
<td>See “Quantum Tunneling” and STM articles on Smartsite, Resources/Quantum Mechanics.</td>
</tr>
<tr>
<td>10</td>
<td>Dec. 1</td>
<td>Students’ presentations of final project on construction of a musical instrument.</td>
<td></td>
</tr>
</tbody>
</table>

Paper Due Fri. Dec. 11, 11:59 p.m. Please e-mail a Word or PDF file to Professor Chiang.
Independent Project, Presentation, and Paper:

You must do a project in which you build a musical instrument. A list of suggestions will be provided. See HSH, Chap. 10 for additional ideas on homemade wind instruments. You should use the scientific method to plan and execute experiments which will aid you in building your instrument. Analyze the properties of your instrument in terms of the concepts discussed in class (e.g., frequencies produced, loudness, etc.) You will spend 5-10 minutes to present your project to the class during the last class meeting on **Tuesday, Dec. 1, 2015**. You must write a paper describing in detail the building of your instrument, including what you did and what results you obtained. The expected length of the final paper is about 1000-1500 words (4-6 pages typewritten). Your paper will be graded both on exposition and content.

You are required to send the instructor an e-mail note describing your topic and your plan of attack in several sentences by **Friday, Oct. 30, 2015**. The instructor will be happy to read a draft of your paper at any time and offer suggestions for improvement. The final paper is due **Friday, Dec. 11, 2015, 11:59 p.m.** Please e-mail a Word or PDF file to Professor Chiang.

Other books available at Shields Library (in addition to HSH):

About the Instructor: Professor Shirley Chiang is an experimental condensed matter physicist who specializes in surface science studies using high resolution microscopy techniques. She received her Ph.D. degree from U.C. Berkeley and was a Research Staff Member at the IBM Almaden Research Center before coming to U.C. Davis in 1994. Her current research interests include high resolutions surface imaging of metals on semiconductors, small molecules on metal surfaces, and thin metallic magnetic and alloy films. She is an advanced amateur pianist and an intermediate violinist.
PROJECT SUGGESTIONS FOR MAKING AN INSTRUMENT

The possibilities range from crude and simple versions up to concert-quality (very time-consuming!) instruments. You should think about the design and implementation problems and aim at understanding and explaining the resulting playing and sound characteristics. Also try to explain what notes the instrument plays, whether it can play a scale, and whether it can be tuned.

String: Construct your own original design or copy elements from actual stringed instruments. Possible materials for strings are nylon fishing line, wire, or purchased strings for guitars, violins, etc. Possible instrument bodies range from milk cartons, shoeboxes, wood frames, plastic boxes, etc.

Percussion: Use your imagination, and try unusual ingredients.

Flute: Plastic garden hose, bamboo, PVC irrigation pipe, or even a good piece of hardwood are all possible construction materials. The class website has a handout about where to place the holes.

References
5. Arthur Benade, *Horns, Strings, and Harmony* (required text and available in library), Chapter X.

NOTE: Professor Chiang can reimburse you for $5 to $30 of expenses used for parts to build your instrument, if you keep the receipts and submit them to her with the provided form at the end of the class, i.e., after your presentation on Dec. 1, 2015 or by the end of the quarter, Dec. 11, 2015.